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A variational study of the ground Landau level of the 2D 
Frohlich polaron in a magnetic field 
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Depamnent of Physics, Bilkeent University, 06533 Ankara, Turkey 

Received 28 February 1995. in final form 1 November 1995 

Abstract. The problem of a two-dimensional polaron in a magnetic field is retrieved within the 
framework of an improved variational approximation which seu up a fractional admixture of the 
strong- and weak-coupling counterparts of the coupled electron-phonon system. The formulation 
is based on the usage of an adiabatic polaronic wavefunction corrected by a variationally 
determined perturbative extension enabling the adiabatic M S ~  to be extrapolated towards the 
w&coupling regime. The trial state derived here accounts for the magnetic field intensity 
not only in the elemon parl of the Hamiltonian, but also within the context of the part of the 
Hamiltonian describing the coupling of the electron ta the phonon field. 

1. Introduction 

Even though the polaron problem is a rather old subject, it has recently excited renewed 
interest in the context of low-dimensionally confined quantum systems. Of particular interest 
are idealized strict two-dimensional (ZD) models accounting for the almost-two-dimensional 
generic aspect of an electron in a thin quantum well and yet interacting with the bulk phonon 
modes of the well material [l-91. Studies along these lines have revealed that the effective 
electron-phonon coupling becomes enhanced by a factor of nl2 over its bulk value in the 
weak-coupling regime relevant to most interesting compound semiconductors. For the case 
of a polaron under a~ magnetic field the binding gets even deeper due to the additional degree 
of localization brought about by the magnetic field [3-91. It has been noted that for intense 
magnetic fields the phonon part of the ground-state energy grows at a rate a, which is 

In view of the innumerable papers devoted to magnetopolarons, we see that the problem 
is not only interesting in laying out distinctive qualitative features in the different regimes of 
the magnetic field intensity and the electron-phonon coupling stxength, but is also attractive 
from a formal'point of view. The visualization of the problem as a whole is not very 
immediate due to the roles which the magnetic field and phonon coupling play in the 
polaron binding being not completely independent: they are interrelated, each ,sometimes 
dominating over the other, and yet they act together to enhance the phonon coupling. The 
qualitative aspects of the problem become simple, however, in some extreme cases. 

For weak phonon coupling the most sensible approach is via the perturbation theory (see 
Larsen [4, 51, for instance), and moreover if the magnetic field is also weak, the problem 
can be characterized as consisting of an electron orbiting together with its concomitant 
lattice deformation with an effective polaron mass rather than the band mass. In this 
limit the ground-state energy can readily be written as the sum of the polaron self-energy 
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much faster than in 3D where the magnetic field dependence is of In B form. ~~ 
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-(z/2)a72~0 and of the lowest Landau energy eB/2m*c in which m', corrected up to first 
order in the coupling constant, scales to m*(l + (n/8)a). Introducing the dimensionless 
cyclotron frequency w, expressed in units of wL0 (the LO-phonon frequency), the ground- 
state energy (in usual polaron units: f i  = 2m* = 0'0 = 1) is given approximately by 
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E, Fs -0, I - -a 7T (l+$).  2 2 
A contrasting aspect to such a description of the polaron is the case where the electron 

goes into a bound state with a highly localized wavefunction in a deep self-induced potential 
well of the lattice polarization. A way to investigate this totally distinctive aspect is ei!her 
to imagine a rather strong coupling to the lattice or to go over to the high-magnetic-field 
limit where the lattice can only respond to the mean charge density of the rapidly orbiting 
electron and hence acquire a static deformation over the entire Landau orbit. Thus, one 
readily notes that, in spite of a small coupling constant, a pseudo-adiabatic condition can 
be attained when wc >> 1. 

A complementary remark in this regard is that in the high-field limit and for weak polar 
coupling (a << l), the usual adiabatic theory gives 

(2) 
1 1 

2 
for the ground-state energy which differs from the perturbation theory estimate by a factor 
of 2-'/* in the polaronic term [5].  The reason for the inconsistency lies in the fact that the 
most efficient coherent phonon state should not be taken as centred on the average electron 
position but instead on the orbit centre [lo] po = xo2 +yo& where 

Es = yc - - a m  

1 2  1 2  
xo = - x  - - PYYO = -Y + -px. 

2 @e 2 0, 
(3) 

In fact, the role which the orbit centre coordinates play in the theory and, for large U,, the 
necessity of imposing a coherent phonon state operator leading to a deformation centred at 
po were emphasized earlier in an elaborate discussion by Whitfield, Parker and Rona [ 1 I]. 

In this report we retrieve the magnetopolaron problem within a generalized variational 
scheme and give emphasis to the case where the effect of electron-phonon coupling is 
dominated by the magnetic field counterpart of the problem. We shall totally disregard the 
phonon-coupling-dominated (a >> 1) characterization of the polaron consisting of a deep 
self-induced potential well confining the rapid random charge density fluctuations of the 
electron which is furthermore under the influence of a relatively weak magnetic field. In 
the following we take the lattice deformation as centred essentially at po rather than at the 
mean electron position and think of the elechon as rotating on a complete Landau orbit. 

Even though for somewhat strong field intensities the problem shows a vague strong- 
coupling aspect, a pure adiabatic approach fails to reflect a correct description of the system 
other than for infinitely large magnetic field strengths. On the other hand, a pure perturbation 
treatment may also be not perfectly appropriate other than for too small a. We are therefore 
tempted to formulate the magnetic-field-dominated regime of the magnetopolaron within 
the framework of a more convenient approach accounting for the fractional admixture of 
the weak- and strong-coupling aspects simultaneously. The formalism that we follow in 
this work consists of the usage of a variational nnrutz introduced previously by Devreese 
et af 1121 in their application to the bulk optical polaron bound to a Coulomb potential. 
The procedure is to start with the standard canonical transformation of the strong-coupling 
formulation and then modify the adiabatic polaron state via a variationally determined 
perturbative extension serving for the theory to interpolate in the overall range of the 
coupling constant. 
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In fact, the problem that we refer to here has already been discussed earlier within almost 
the same variational approach in a paper by ErGelebi and Saqqa [9]. The major distinction 
which sets the present concerns apart is that the variational state derived here is of a more 
general content, accounting for the magnetic field parameter wc not only in the electron part 
of the Hamiltonian, but also within the context of the part of the Hamiltonian describing 
the coupling of the electron to the phonon field. Performing  the^ two studies separately with 
identical numerical precisions, we have observed that one reaches significantly improved 
energy upper bounds in the present case and this provides the motivation for readdressing 
the problem. 

2. Formal preliminaries 

Employing the symmetric gauge, A = (B/2)(-y, x, 0). for the vector potential, the Hamil- 
tonian of a 2D electron immersed in the field of bulk LO phonons is given by 

in which UQ (a;) is the phonon annihilation (creation) operator, and p = (x, y )  denotes 
the electron position in the transverse plane. The interaction amplitude is related to the 
electron-phonon coupling constant CY and the phonon wavevector Q = q + q,.? through 
rQ = &IQ. In the above, all physical quantities and operators have been written in 
dimensionless form with (f i /Zm*w~~) ' /~ being selected as the unit of length and the phonon 
quantum Ao~o as the unit of energy. 

2.1. Electron eigenstates 

Before proceeding with our main theme we first put the electron part of the Hamiltonian 
and its eigenstates into a transparent and convenient form where the relevant algebra is well 
known and calculations are easily made. To this end we follow the representation advanced 
in the papers by Malkin and Man'ko [I31 and Whitfield, Parker and Rona [ll].  Setting 

-. ,.. I ..i. 

~ 

~~ 

z = -  -(x+iy) 
2 2  'F 

and introducing the operators 

with 

[U. U'] = [U, U'] = 1 [U, U] = [U, ut] = 0 

one obtains 

He, = (ut, + i) w,. 
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It is evident that ut (U) steps up (down) both the energy and the angular momentum: 
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On the other hand, ut and U step only the angular momentum and not the energy. It thus 
follows that the energy eigenvalues of He! are infinite-fold degenerate and, therefore, one 
is led to represent the corresponding eigenstates as 

(9) IbwJ = X ~ ~ . ~ ~ I O O )  

X.",., = (n&!n"!)-l'*(Ut)n" (U')"". (10) 

nu, nu = 0.1.2, . . . 
where 

2.2. The displaced oscillator transformation 

No matter how small 1y is, the starting idea in the foregoing approximation is to contemplate 
a very strong magnetic field to which the lattice responds by acquiring a relaxed static 
deformation clothing the entire Landau orbit. The adiabatic polaron ground state thus 
formed can be written in a product ansatz consisting of the electron and lattice parts, i.e., 

where IOph) is the phonon vacuum and e' is a unitary displacement operator changing the 
reference system of virtual particles by an amount rQUQ0. The most appropriate lattice 
wavefunction corresponding to the relaxed state of the electron-lattice system is determined 

Y~ = loo)esjopd (11) 

to be 

with 

Thus. wi 

r -, 

uQO = (001e*'P''P-P0'100) = exp(-q2/2wc). 
e most efficient coherent phonon state as centred on the o 

Hamiltonian transforms to 
H' = e-SHeS 

centre. the 

where 

(15) 
If we were interested only in the adiabatic high-field limir all that would remain would be 
the calculation of the expectation value of H' in the state lOO)lO,h), and we would readily 
obtain 

(16) 

= ( ' (P - PO )-UQ}. 

1 
E, = -jwC - A0 

where 

(17) 
1 

rl0 = r2Qu;o = z~~ 
e 

which is identical to the perturbation result of Larsen [5] to leading order in a. 
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3. Theory 

Obviously, for magnetic fields that are not too strong the adiabatic condition (and hence 
equation (16)) loses its validity, and one is tempted to consider the perturbation approach, 
whose applicability, however, is confined to the region where E < 1. A theory which is 
capable of yielding the effective phonon coupling, not restricted solely to the weak or-limit, 
can be based on variational grounds. We thus choose to continue from equation (14), and 
modify the state @o = 1OO)jO,h) accordingly by conforming it to'a generalized form: 

4 0  + Q; = s2 (E, oe)@o (18) 
where. the operator Q(E, oc) is intended to interrelate the weak- and strong-coupling 
counterparts of the problem depending on the strength of phonon coupling and the magnetic 
field intensity. 

3.1. The variational trial state 

On taking an already small E and further shifting o, down to small values, the degree of 
localization of the electron becomes reduced in a significant manner; UQO in equation (14) 
tends to become zero on average and thus H' converts back to its original form as given 
by equation (4). In view of this reasoning one is led to treat the last term in equation (14) 
as a perturbation [12]. 

In  the^ perturbation treatment of the Frohlich interaction, the first non-vanishing 
contribution to the ground-state energy comes from the term which is of second order 
 in the interaction amplitude. Correspondingly, the leading correction to the ground state is 
of first order and is given by the sum 

in which the index n refers to the intermediate states consisting of those of the electron 
and one phonon with wavevector Q. In the above, 9, and e,, are to be thought of as the 
eigenstates and the eigenvalues of the unperturbed part of the transformed Hamiltonian (14). 
In order to calculate the perturbation sum (19) one needs to know the explicit functional 
forms of p, and the energies en which, however, is a rather difficult task since now they 
depend in general on a and the lattice coordinates in an involved  manner.^ Nevertheless, 
for the energy correction to be retained up to first order in E, we choose pn as the set of 
eigenfunctions of the bare-electron problem and-ignore any wdependence in either pn or 
E., i.e., we take 

Making a correspondence with the perturbation treatment of the problem one readily notes 
that the only thing we should do is account for the momentum conservation of the scattered 
electron-phonon system. We are thus tempted to write the energy difference as 

where S.(Q) is'introduced so as to bear any necessary phonon wavevector dependence. 
Using the identity 

J o  
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we set 
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where 
m 

J ( o c ,  n,) = d< e-4 exp(-o&) (23) 

and gQ stands for the exponential factored out as an averaged quantity which, in 
the calculation, will be determined variationally. Substituting (15) and (22) into equation 
(19) we obtain 

(24) A% = r Q g Q  J(Wc,  nu)6Qn(CQn - UQ0&..01Xn..n,Q~% t 

uQX = (OP,le-'4'(P-")100) = (nu!)-llz[-i(qx - iq,.)o, -112 1 nu0 00 

Q n 

where 
(25) 

zQ0 = (Onle-'4'Pol@o) = (nv!)-'/2[-i(qx + iq,)w;'/*]""uQo. (26) 
Using equations (lo), (U) and (26) we see that the extended state @& = COO + A 4 0  can 
indeed be written in the form (18) with 

Q(f f ,w , )  =c+CrngpA*Qaip (27) 
Q 

in which c is a constant to serve for normalization, and 

(28) 

(I(<) = qexp(-M) (29) 

)'!2 = lmdc e-"JQ(E)eQ(O (30) 

Projecting out the quantum numbers n. and n,, and, for notational convenience, writing 

we find that h~ takes the compact form 

in which 

V Q ~ O  = exp(-q2(t)/hc). (33) 
It should be remarked that the two individual contributions to the binding coming from the 
electron-phonon coupling alone and the magnetic field alone are fundamentally incorporated 
via the operator Q(a, oc) and, in particular, via the variational parameter gQ which also 
governs the detailed admixture of the strong- and weak-coupling counterparts of the problem. 

Due to the complicated nature of equation (27) where, at this stage, gQ remains 
undetermined, simpIe concise predictions are not readily tractable except in the high-field 
limit where one expects the theory to impart most dominance to the strong-coupling aspect. 
In this extreme, + 1, V Q ( ~ )  + 0, and consequently A Q  in (27) becomes zero, and 
hence Q(a. w,) conforms to the identity operator where we recover the strong-coupling 
theory. 
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3.2. Formulation 

In order to reach the optima~fit to gQ one has to minimize the expectation value of H’ in 
the trial state @b = G(u, oC)@o subject to the constrant that CP& is normalized: 

(34) F(C, gQ) e (@;I@;) - 1 = C2 + rggp 2 Zh‘l’ Q - 1 =-0 
Q 

where 

(35) h(’) - 
Q - (@OIAQ~;I@O). 

The variational procedure thus requires~ 

(36) 
a 

- {E(c ,  gQ) - AF(c,  SQ)} = 0 
agQ 

where A is a Lagrange multiplier, and E(gQ,  c )  refers to the ground-state energy given as 

E(c, gQ) = (@;/H’I@;) 
1 
2 

= ~ - w ,  -Ao+Z~C~~Q~Q~~’+C~~Q~~QI~Q + h $ ’ ( l + 2 A o )  - 8 ~ 1  
Q Q 

(37) 
in which 

~~ 

SQ = Cr2Q,uQ,o(@olhQ(exp[iq‘. (P - poll + ccIA;l@o). (40) 
Q’ 

The corresponding analytic expressions for h;), hg) ,  eQ and SQ are rather lengthy to give 
here, and therefore we provide them in the appendix. 

Carrying out the Lagrange-multiplier-minimization technique we find that the optimal 
fits to gp and A can be derived through the set of equations 

h (0) 
gQ _ _  Q -- 

C eQ - 6~ + (1 + 2Ao - A)h(d) 

and, further, for the ground-state energy we obtain 

(41) 

(42) 

(43) 
1 

8 - 2  
E - -w, - Ao + A. 

4. Remarks and conclusions 

In the energy~expression (43), the additive term A, by means of which the adiabatic 
theory goes over to the weakcoupling regime, depends implicitly on the magnetic field 
and phonon coupling strengths through the transcendental equation (41). For a large value 
of the cyclotron frequency, h;) in equations (41) and (42) tends to zero; thereby A sx 0, 
and hence the seong-coupling limit is readily attained even for a << 1. As, however, o, 
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is decreased to lower values, the parameter A starts to interfere in the theory and strongly 
modify the results of the adiabatic approximation. In particular, for somewhat small field 
intensities and weak phonon coupling, the role A plays becomes very prominent and the 
polaron binding is effectively determined by this term. In this limit it is easy to see that 
the terms JQ, A0 and A in equation (42) are all proportional to a in leading order and 
thus become far too small to yield any significant contribution to the summand in the 
transcendental equation (41). Therefore, retaining only h:), h:’ and eQ, and expanding the 
summand in a power series up to first order in wc, we have 

A ErFelebi and R T Senger 

Finally, projecting out the wavevector sum in (41), we achieve 

which, when inserted in equation (43), yields the approximate effective-mass-argument- 
based energy expression as given in equation (1)-thus exemplifying the essential role 
which A plays in conforming the adiabatic approximation to the results derived from the 
perturbation theory [4]. 

It is instructive to note that when the binding is somewhat deep (wc >> I), one expects 
the energy eigenvalues of the bare-electron Hamiltonian and hence the differences in them 
to be significantly larger than the LO-phonon energy, which we take to be unity in our 
dimensionless units. If what we were really applying was ordinary perturbation theory the 
only significant contribution in the perturbation sum would come from the leading term 
nu = 0, for this term has the smallest energy denominator. Dropping all terms except 
the nu = 0 one, we arrive at exactly the same expression as obtained from the present 
calculation with A = 0. We thus note that in the extreme regime of highly localized 
configurations with shrinking cyclotron size the perturbation and strong-coupling theories 
match and are equally valid. On the other hand, as the magnetic field strength is made 
smaller, the adiabatic approach rapidly loses its validity since now the Landau levels are 
closer and even tend to coalesce towards the ground level. The corresponding perturbation 
series thus becomes slowly convergent and one needs to include~the remaining terms-other 
than nu = 0-as well. This, however, is accomplished in the present formalism by simply 
solving the transcendental equation (41) for the Lagrange multiplier A. Obviously, due to 
the analytical complexity the optimal fit to A (and to gQ) can only be obtained by numerical 
techniques. 

4.1. An alternative approach 

Before presenting a general display of our numerical results we would like to make a small 
digression on an alternative approach and set up some correspondence with the variational 
bound-polaron state which has been proposed previously by Devreese er a1 1121, and later, 
in [9], adapted to the two-dimensional maznetopolaron problem. The basic distinction 
which sets the present formulation apart from that advanced in papers [12] and [9] stems 
essentially from the manner in which the perturbation expression (19) is treated in deriving 
the variational extension to the adiabatic polaron state Qo. 

A more straightforward and less tedious approach to obtaining an analogous form for 
the variational state Qb, or equivalently for the operator a@, oc) as defined in equation 
(18), can be achieved by treating the reciprocal of the total energy denominator E,  - E O  + 1 
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in equation (19) as some average c-value, gQ, and then setting E,, l~,J(pnl to the identity 
operator. Thus, in complete form, one obtains a simpler structure for the operator 52 as 
introduced in [121 or 191, i.e. 

n('% @c) = c + rQgQ@L (46) 

.~ 

Q 

in which the @,-dependence is provided only implicitly through parameter gQ. 
In the present treatment of the problem, however, we have found it necessary to conserve 

the track of the magnetic field parameter 0, throughout the computational steps taken in 
reaching the extended variational state Qh (equation (IS)), thus accounting for this parameter 
not solely in the bare-electron part of the Hamiltonian, but also within the context of the 
part of the Hamiltonian describing the coupling of the electron to the phonon field. A 
glance at equation (30) reveals that the way in which this is accomplished is through the 
&integrals involving the modified wavevector ,q(O = qe-"C which imposes a detailed link 
incorporating the cyclotron frequency and the electron-phonon coupling. More peculiar in 
the concern with the weight is that it further takes part in determining the variational 
parameter gQ which sets up the detailed interbalance between the strong- and weak-coupling 
counterparts of the coupled electron-phonon system. The passage from the form (27) 
derived in this report to that given in equation (46) c q  readily be attained by simply 
deleting the exponential factor e-wct in equation (29), thus replacing q( ( )  by 4 in the set 
of equations (30t(33). The ground-state ener y can similarly be derived through equations 

~ 
~ 

~ ~ 

~ 

(41)<43), where now the parameters h$),  h i  ? , eQ and S Q  simplify to 

h Q -  (0) - h(') Q - l - ~ Q o  - 2 e Q = q 2  ' 6Q = 2AOa,& - 2AoUQolo(q2/8@,) (47) 

and this facilitates the numerical computations greatly. In contrast, however, the usage of 
this simplified version (46) is expected to yield somewhat larger energy upper bounds due 
to the variational parameter g Q  now being introduced to replace the energy denominator as 
an average quantity factored out away from the intermediate Landau level index nu, thus 
containing only an average of the detailed content of the Frohlich interaction interrelated 
to each of the Landau levels involved in the perturbation sum in equation (19). 

Hereafter, in our discussions we shall refer to the variational ground-state energy values 
as Ef) and if), respectively, for the cases where either the form (46) or (27) is adopted. In 
order to provide a clear insight into the improvement achieved by the present formulation we 
display our results for the two approaches computed under identical numerical precisions. 

Table 1. The ground-state e n e y  versus the cyclomn frequency for n = 0.01. The columns 
(a) and (b) display E!' and E: ), and the columns (111) and (IV) display the adiabatic results 
obtained from equations (2) and (16). (171, respectively. 

0, (a) '(b) (111) (IV) 

0.1 0.03435 0.03420 0.04802 0.04720 
0.2 0.08427 0.08399 0.09720 0.09604 
0.5 0.23388 0.23336 0.24557 0.24373 
1 0.48301 0.48233 0.49373 0.49114 
2 0.98109 . 0.98036 0.991 14 0.98747 
5 2.47582 2.47520 2.48599 2.48018 

10 4.96880 4.96830 4.980 18 4.97198 
20 ' 9.95808 9.95772 9.97198 9.96037 
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4.2. Numerical results 

We first refer to the regime of extreme weak coupling and tabulate E, versus w, for 
a = 0.01. An immediate glance at the respective columns for E$') and E:*) in table 1 
reveals that the improved trial state (27) derived in this work yields significantly lowered 
energy upper bounds and, moreover, we find that the numerical values produced by the 
present treatment of the problem are in perfect agreement with those obtained from the 
second-order perturbation approximation [4]: 

A Ergelebi and R T Senger 

We should again draw attention to the facts that, in spite of a small a, a pseudo-adiabatic 
condition is reached for large 0, and that the adiabatic limit considered here is the case 
where the lattice distortion is thought of as centred on the orbit centre coordinates (3) as 
characterized by equations (16), (17) rather than by equation (2). It is only then that the 
adiabatic approximation (and hence the present variational approach) fits the second-order 
perturbation theory for (Y << 1 and w, >> 1. Indeed, a careful examination of the numerical 
values in table 1 confirms that the energies in columns (b) and (IV) (those obtained from 
(16) and (17)) tend to approach one another and eventually coincide as the magnetic field 
is made stronger. The energy values obtained from equation (2). however, remain deviated 
from the correct high-field limit due to the electronic wavefunction in the x-y plane not 
having to be as broad as depicted when the lattice displacement is set at p = 0 (cf. section 
III in [Ill). This feature has been made more explicit in figure 1 where A E ,  is displayed 
for large cyclotron frequencies. 

1 

E y r e  1. The asymptotic profiles for AEs in the high-field limit. Curve (3) displays the results 
for the improved version in the present calculation. The straight lines (111) and (IV) are the 
strong-coupling results plotted from equations (2) and (16). (17). respectively. The energies are 
expressed in terms of the free-polaron binding energy, (x12)a. 

In order to provide a pictorial view of the asymptotic energy profile of the system in the 
low-field limit and, in particular, to give somewhat more impact to the limiting expression 
for the parameter A as derived in equation (45), we also display the polaron-induced shift, 
AE, = ~ E ,  - E& = 0), in the lowest Landau level calculated from both approaches, (a) 
and (b), over a reasonably broad range of small a,-values. A remarkable feature pertaining 
to the set of energy values (a) and (b) in figure 2 is that as w, tends to small values, IAE$')[ 
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1.08 ~. 

do4 
7 l.M 

. 

. * (a) . 

... 
I - .  ... . . . - -  

0.98 ‘ ’ 
0.1 

0, 

Figure 2. AEx versus U, in the low-field regime. The sets of dark circles (a) and (b) display 
the results for the present formalism for the cases where either the form (46) or the form (27) 
is adopted. The energies are expressed in terms of the free-polaron binding energy, (z/Z)w, 

~ 

approaches the free-polaron binding energy, (x/2)a, from slightly below, which clearly is 
an incorrect description at least from a qualitative viewpoint-the binding should inherently 
be stronger under an external magnetic field. The deficiency encountered here, however, 
is ‘cured’ on utilizing the improved version (b). Within the framework of the modified 
trial state (27) we observe that IAEF)] displays instead a monotonically decreasing profile 
approaching the asymptotic value (x/2)a from above, thus being totally consistent with the 
description implied by equation (1) or, equivalently, by (48). 

Going over to stronger-coupling constants a clear and concise description of the polaron 
state may no longer be readily tractable owing to the combined effect of the magnetic 
field and the Frohlich interaction. Depending on the strengths of the parameters UJ, and 
a, there are two competitive contributions coming from the magnetic field alone and 
the phonon coupling alone-yet acting in an interrelated manner. thus leading to rather 
involved and distinguishing characterizations of the magnetopolaron. The treatment of the 
problem is relatively simple, m how ever, in the extreme regimes where either the magnetic 
field counterpart or the phonon coupling dominates over the other. It is worthwhile to recall 
that our present considerations have been focused on the regime in which the magnetic field 
has the dominating strength over the coupled electron-phonon system where the relevant 
coherent phonon state is most appropriately structured so as to clothe the entire Landau 
orbit (with centre at po) rather than the mean electron position at the origin. 

In figure 3 we select the coupling constant as larger by an order of magnitude,~a = 0.1, 
and provide plots of the phonon-induced shift in the energy against UJ, togefher with 
the available data (cf. dark circles in the figure) taken from the generalized path-integral 
formalism of Wu, Peters and Devreese [6] (henceforth denoted as WPD). At this point it 
should be mentioned that the validity of the WPD theory has remained an open question 
over almost a decade (since the pioneering conjecture of k e n  [14]) from the formal 
viewpoint in the sense that their high-field estimates might lie below the actual ground- 
state energy [8, 14-16]. The controversy in the literature on the applicability of the path- 
integral formalism for systems with non-zero magnetic fields has been resolved recently in 
an elaborate discussion by Devreese and Brosens [17, 181 where they have shown that the 
Jensen-Feynman inequality is not a priori justified unless it is extended under additional 
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Figure 3. The phonon-induced shift in the lowest Landau level energy as a function of wr. 
Curves (a) and (b) are. respectively, for the cases where the form (46) or the form (27) is used 
for Q(w, 4. The dark circles display the generalized path-integral results for the WPD theory 
[6], and the dashed line refers to the results of the strong-coupling approximation (17). 
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Figure 4. Ths phonon-induced shin in the lowest Landau level energy as a function of U. The 
dark circles display the generalized path-integral results for the WPD theory 161. The plot is 
expanded in the energy region between -1 and 0, and to avoid confusion the curves are dashed 
in that region. 

constraints when a magnetic field is present Therefore, a rigorous variational justification 
of the WPD results can only be made within the framework of the generalized inequality 
derived in [17]. Nevertheless, we still choose to make a correspondence with the numerical 
outcomes of the WPD approximation and compare them with those derived from the present 
approach which has a conventional variational framework. 

Referring first to the present results (a) and (b) derived for the variational polaron states 
given through equations (46) and (27), we infer that E:) drops significantly below E:) 
and that the usage of the improved trial state (b) gives far more satisfactory energy upper 
bound values. Comparing our results with those of WPD we find that even though Eib' 
lies consistently above the WPD energies, the discrepancy does not seem to be strikingly 
prominent especially for large magnetic field strengths. For oc = 4, for instance, we obtain 
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AB:*’ = -0.2310 which is fairly close (within only 0.6%) to the value -0.2324 derived 
by WPD. Using the form (46) for n(a, we) however, we obtain AEf) = -0.2250 yielding 
a discrepancy as large as 3.2%. We thus see explicitly that approach (b) gives far better 
results than (a) and further that the values reached using (b) are in fairly close agreement 
with those of WF’D. 

As the adiabatic limit (0, >> 1) is approached, we observe that the present formulation 
and the WPD theory match and give almost identical results, e.g. for w, = 10 we have 
AEF) = -0.3170 and AE,”PD) = -0.3173. For even larger values of w, the theory places 
comparatively less weight on the role which the parameter A plays in equation (43), thus 
imparting somewhat more dominance to the strong-coupling counterpart of the problem. 
Therefore, in the limit of intense magnetic fields, one readily expects all theories ((a), @) 
and WPD) to duplicate asymptotically the strong-coupling results given by equation (17). 
Similar conclusions hold true for even stronger values of the coupling constant provided 
that the magnetic field is sufficiently large as to preserve the validity of the displaced 
oscillator transformation applied to the starting strong-coupling unsak in the derivation of 
the present variational formalism. Setting w, = 10, we obtain AEf) = -3.1472 and 
-12.4171 for a = 1 and a = 4, respectively, whereas the corresponding WPD values have 
been reported to be -3.1737 and -12.7004 which lie below the @) results by not more 
than 0.8% and 2.2%. 

In order to provide comprehensive insight into the extent of applicability of the present 
approach in the large-a regime we display our results together with some of the available 
WF’D data (dark circles) for two different magnetic field strengths (cf. figure 4). We note that 
as long as the magnetic field is strong enough to dominate over phonon-coupling-induced 
self-localization of the polaron, the agreement is fairly good in that all the WPD points for 
a = 0.1, 1 and 4 lie only slightly below our calculated values plotted for w, = 10 and 
CO, = 4, except the one for CY = 4 and w, = 4 which is seen to lie drastically below the 
present theory values (AEjwPD) = -10.0090, A E f ’  = -8.7823). The reason for this lies 
in the transformed Hamiltonian (14) involving the coherent phonon state centred on the 
orbit centre po, which is obviously misleading since, for strong phonon coupling but not 
large enough w,, the polaronic aspect overcompensates for the magnetic field counterpart of 
the problem-this particular situation being beyond the limit of applicability of the present 
approximation. A way to overcome the drawback encountered here can readily be found 
by making reference to the extreme limit where % >> 1 and w, << 1, where now the 
lattice deformation should be thought of as surounding the mean charge density of the 
electron itself rather than its overall motion in a complete Landau orbit (cf. [9]). Discussion 
pertaining to this totally distinctive aspect of the magnetopolaron is beyond the scope of 
our present interest. 

In summary, this work revises the problem of a polaron in a magnetic field within an 
improved version of the extended variational scheme of Devreese et a1 [12] proposed for 
the bulk bound polaron. Although most of the formulation that we have adopted applies 
to a polaron in any dimensionality, for the present we have restricted our considerations 
to the 2D model of a magnetopolaron so as to eliminate any complications arising from 
the third dimension and have given most emphasis to the formal viewpoint of the problem. 
In view of our numericaI results and the asymptotic analytic forms (16) and (45) achieved 
for w, >> 1 and w, << 1, we reach the conclusion that the improved trial state introduced 
through equations (27) and (29)-(33) is rather promising in that it conveniently sets up a 
weighted admixture of the strong- and weak-coupling counterparts of the problem and thus 
enables the adiabatic results to conform satisfactorily to those attained from second-order 
perturbation theory. 
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Appendix 

Referring to the set of equations (30)-(33) and using the integral transform 
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(0) (1) we obtain the following functional forms for the parameters hQ , hQ , eQ and 6~ defined 
in equations (35) and (38)-(40): 

and 

6~ = 2hou& - 2Ao lm dt e-' 1' dt' [G(t + t') + G(2 - t')] 

where 

and 

F ( x )  = ebxr0(x) ~ 

with lo denoting 'the modified Bessel function of order zero. 
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